code :
  
import numpy as np import scipy.io as sio import matplotlib.pyplot as plt 
mat=sio.loadmat('ex8data1.mat') print(mat.keys())# X Xval yval 
X=mat['X']#(307,2) Xval,yval=mat['Xval'],mat['yval']#(307,2)(307,1) #  Draw initial image  
plt.plot(X[:,0],X[:,1],'bx') plt.show() # 1. Obtain the mean and variance of sample features in the training set  def 
estimateGaussianl(X,isCovariance): means=np.mean(X,axis=0) if isCovariance: 
sigma2=(X-means).T@(X-means)/len(X) else: sigma2=np.var(X,axis=0) return 
means,sigma2 # 2. Multivariate normal distribution density function  def gaussian(X,means,sigma2): if 
np.ndim(sigma2)==1: #  Convert to two-dimensional matrix  sigma2=np.diag(sigma2) X=X-means n=X.shape[1] 
first=np.power(2*np.pi,-n/2)*(np.linalg.det(sigma2)**(-0.5))# Is a number  
second=np.diag([email protected](sigma2)@X.T)#(307,) 
p=first*np.exp(-0.5*second)#(307,) p=p.reshape(-1,1)# Convert to a column  return p # 3. mapping  def 
plotGaussian(X,means,sigma2): x=np.arange(0,30,0.5) y=np.arange(0,30,0.5) 
xx,yy=np.meshgrid(x,y) #  Calculate the corresponding Gaussian distribution function  
z=gaussian(np.c_[xx.ravel(),yy.ravel()],means,sigma2) zz=z.reshape(xx.shape) 
plt.plot(X[:,0],X[:,1],'bx') contour_levels=[10**h for h in range(-20,0,3)] 
plt.contour(xx,yy,zz,contour_levels) 
means,sigma2=estimateGaussianl(X,isCovariance=False) 
plotGaussian(X,means,sigma2) # 4. Select threshold  def selectThreshold(yval,p): 
bestEpsilon=0 bestF1=0 #  Candidate value  epsilons=np.linspace(min(p),max(p),1000) for e in 
epsilons: p_=p<e tp=np.sum((yval==1)&(p_==1)) fp=np.sum((yval==0)&(p_==1)) 
fn=np.sum((yval==1)&(p_==0)) prec=tp/(tp+fp) if(tp+fp) else 0 rec=tp/(tp+fn) 
if(tp+fn) else 0 F1_e=2*prec*rec/(prec+rec) if (prec+rec) else 0 if 
F1_e>bestF1: bestF1=F1_e bestEpsilon=e return bestEpsilon,bestF1 
means,sigma2=estimateGaussianl(X,isCovariance=False) print(means,sigma2) 
pval=gaussian(Xval,means,sigma2) bestEpsilon,bestF1=selectThreshold(yval,pval) 
#  Find outliers  p=gaussian(X,means,sigma2) anoms=np.array([X[i] for i in 
range(X.shape[0]) if p[i]<bestEpsilon]) plotGaussian(X,means,sigma2) 
plt.scatter(anoms[:,0],anoms[:,1],c='r',marker='o') 
  Result display :
 
Technology