Recently, I turned to an article , There's a lot of use on it Python( Mostly turtle library ) Draw a tree diagram of , It feels beautiful , I sort it out , I've selected some good code to share with you ( I've tested all these , It can be generated ~)
one cherry tree

* Dynamic generation of Cherry Blossom
design sketch ( This is dynamic ):
Implementation code import turtle as T import random import time # Painting the trunk of Cherry Blossom (60,t) def Tree(
branch, t): time.sleep(0.0005) if branch > 3: if 8 <= branch <= 12: if random.
randint(0, 2) == 0: t.color('snow') # white else: t.color('lightcoral') # Light coral t.
pensize(branch / 3) elif branch < 8: if random.randint(0, 1) == 0: t.color(
'snow') else: t.color('lightcoral') # Light coral t.pensize(branch / 2) else: t.color(
'sienna') # Ochre (zhě) colour t.pensize(branch / 10) # 6 t.forward(branch) a = 1.5 *
random.random() t.right(20 * a) b = 1.5 * random.random() Tree(branch - 10 * b,
t) t.left(40 * a) Tree(branch - 10 * b, t) t.right(20 * a) t.up() t.backward(
branch) t.down() # Fallen petals def Petal(m, t): for i in range(m): a = 200 - 400 *
random.random() b = 10 - 20 * random.random() t.up() t.forward(b) t.left(90) t.
forward(a) t.down() t.color('lightcoral') # Light coral t.circle(1) t.up() t.backward(a
) t.right(90) t.backward(b) # Drawing area t = T.Turtle() # canvas size w = T.Screen() t.
hideturtle() # Hide brush t.getscreen().tracer(5, 0) w.screensize(bg='wheat') #
wheat Wheat t.left(90) t.up() t.backward(150) t.down() t.color('sienna') # Painting the trunk of Cherry Blossom
Tree(60, t) # Fallen petals Petal(200, t) w.exitonclick()
* Falling effect
design sketch :
code : from turtle import * from random import * from math import * def tree(n,l):
pd()# Writing # Shadow effect t = cos(radians(heading()+45))/8+0.25 pencolor(t,t,t) pensize(n/3
) forward(l)# Draw a branch if n>0: b = random()*15+10 # Right branch deflection angle c = random()*15+10 # Left branch deflection angle
d= l*(random()*0.25+0.7) # The length of the next branch # Turn right at a certain angle , Draw the right branch right(b) tree(n-1,d)
# Turn left at a certain angle , Draw left branch left(b+c) tree(n-1,d) # Turn around right(c) else: # Painting leaves right(90) n=cos(
radians(heading()-45))/4+0.5 pencolor(n,n*0.8,n*0.8) circle(3) left(90)
# add to 0.3 Times of falling leaves if(random()>0.7): pu() # Falling t = heading() an = -40 +random()*40
setheading(an) dis = int(800*random()*0.5 + 400*random()*0.3 + 200*random()*0.2)
forward(dis) setheading(t) # Painting leaves pd() right(90) n = cos(radians(heading()-45))/4
+0.5 pencolor(n*0.5+0.5,0.4+n*0.4,0.4+n*0.4) circle(2) left(90) pu() # return t=
heading() setheading(an) backward(dis) setheading(t) pu() backward(l)# return bgcolor
(0.5,0.5,0.5)# Background color ht()# hide turtle speed(0)# speed 1-10 gradual ,0 Fastest tracer(0,0) pu()# pen-up
backward(100) left(90)# Turn left 90 degree pu()# pen-up backward(300)# back off 300 tree(12,100)# recursion 7 layer done(
)
* Dark effect
effect :

code from turtle import * from random import * from math import * def tree(n, l)
: pd() t = cos(radians(heading() + 45)) / 8 + 0.25 pencolor(t, t, t) pensize(n /
4) forward(l) if n > 0: b = random() * 15 + 10 c = random() * 15 + 10 d = l * (
random() * 0.35 + 0.6) right(b) tree(n - 1, d) left(b + c) tree(n - 1, d) right(
c) else: right(90) n = cos(radians(heading() - 45)) / 4 + 0.5 pencolor(n, n, n)
circle(2) left(90) pu() backward(l) bgcolor(0.5, 0.5, 0.5) ht() speed(0) tracer(
0, 0) left(90) pu() backward(300) tree(13, 100) done()
two rose
effect ( There is a drawing process )
code
from turtle import * import time setup(1000,800,0,0) speed(0) penup() seth(90)
fd(340) seth(0) pendown() speed(5) begin_fill() fillcolor('red') circle(50,30)
for i in range(10): fd(1) left(10) circle(40,40) for i in range(6): fd(1) left(3
) circle(80,40) for i in range(20): fd(0.5) left(5) circle(80,45) for i in range
(10): fd(2) left(1) circle(80,25) for i in range(20): fd(1) left(4) circle(50,50
) time.sleep(0.1) circle(120,55) speed(0) seth(-90) fd(70) right(150) fd(20)
left(140) circle(140,90) left(30) circle(160,100) left(130) fd(25) penup() right
(150) circle(40,80) pendown() left(115) fd(60) penup() left(180) fd(60) pendown(
) end_fill() right(120) circle(-50,50) circle(-20,90) speed(1) fd(75) speed(0)
circle(90,110) penup() left(162) fd(185) left(170) pendown() circle(200,10)
circle(100,40) circle(-52,115) left(20) circle(100,20) circle(300,20) speed(1)
fd(250) penup() speed(0) left(180) fd(250) circle(-300,7) right(80) circle(200,5
) pendown() left(60) begin_fill() fillcolor('green') circle(-80,100) right(90)
fd(10) left(20) circle(-63,127) end_fill() penup() left(50) fd(20) left(180)
pendown() circle(200,25) penup() right(150) fd(180) right(40) pendown()
begin_fill() fillcolor('green') circle(-100,80) right(150) fd(10) left(60)
circle(-80,98) end_fill() penup() left(60) fd(13) left(180) pendown() speed(1)
circle(-200,23) exitonclick()
three christmas tree

* christmas tree ( Dynamic generation effect )

code : from turtle import * import random import time n = 100.0 speed("fastest")
screensize(bg='seashell') left(90) forward(3*n) color("orange", "yellow")
begin_fill() left(126) for i in range(5): forward(n/5) right(144) forward(n/5)
left(72) end_fill() right(126) color("dark green") backward(n*4.8) def tree(d, s
): if d <= 0: return forward(s) tree(d-1, s*.8) right(120) tree(d-3, s*.5) right
(120) tree(d-3, s*.5) right(120) backward(s) tree(15, n) backward(n/2) for i in
range(200): a = 200 - 400 * random.random() b = 10 - 20 * random.random() up()
forward(b) left(90) forward(a) down() if random.randint(0, 1) == 0: color(
'tomato') else: color('wheat') circle(2) up() backward(a) right(90) backward(b)
time.sleep(60)
To be continued !

Technology