1. BCELoss
class torch.nn.BCELoss(weight=None, size_average=True, reduce=True)
 *  effect : 
 calculation target  and output  The binary cross entropy between (Binary Cross Entropy)
 
N :batchsize
 If reduce =True
l(x,y)=mean(L),if size_average=True l(x,y)=sum(L),if size_average=False 
 It is used to calculate the reconstruction error , as anto-encoder  in 
targets y The value of is in 0 and 1 between 
 *  parameter  weight(Tensor,optional) -  each batch  Weight of elements . size_average-  Default to True. 
True,losses  stay minibatch  combination weight  Average average. False,losses  stay minibatch  Add and sum sum. 
 When reduce=False  Time , Ignore the parameter . reduce  Default to True True,losses  stay minibatch  Average or sum  
False,losses  return per input/target  Element value ,  And ignore it size_average  input -input x,(N,*)  input -target 
y,(N,*)  output -  If reduce=True, Output scalar value , If reduce=False, The input and output are consistent ,(N,*) 
 *  Examples  import torch import torch.nn as nn sig = nn.Sigmoid() loss = 
nn.BCELoss() input = torch.randn(3, requires_grad=True) target = 
torch.empty(3).random_(2) output = loss(sig(input), target) output.backward() 
2. BCEWithLogitsLoss
class torch.nn.BCEWithLogitsLoss(weight=None, size_average=True, reduce=True)
 *  effect  
 The loss  This layer includes  Sigmoid  Layer and BCELoss  layer .  Single category task .
 The stability of numerical calculation is better (log-sum-exp trik),  Compared to Sigmoid +BCELoss.
 If  reduce =True,
l(x,y)=mean(L),if size_average=True l(x,y)=sum(L),if size_average=False 
 It is used to calculate the reconstruction error , as auto-encoder  in .
target t[i]  The value of is 0  and 1  Values between .
 *  parameter  weight(Tensor,optional) -  each batch  Weight of elements . size_average-  Default to True. 
True,losses  stay minibatch  combination weight  Average average. False,losses  stay minibatch  Add and sum sum. 
 When reduce=False  Time , Ignore the parameter . reduce  Default to True True,losses  stay minibatch  Average or sum  
False,losses  return per input/target  Element value ,  And ignore it size_average  input -input x,(N,*)  input -target 
y,(N,*)  output -  If reduce=True, Output scalar value , If reduce=False, The input and output are consistent ,(N,*) 
 
Technology