<>对称矩阵
 * 元素以对角线为对称轴对应相等的矩阵就叫做对称矩阵
 * 对称矩阵具有的特性: 
 * 对称矩阵中 a i j = a j i a_{ij} = a_{ji} aij=aji
 * 对称矩阵一定是方阵, 并且对于任何的方阵A,  A + A T A + A^T A+AT是对称矩阵
 * 除对角线外的其他元素均为0的矩阵叫做对角矩阵
 * 矩阵中的每个元素都是实数的对称矩阵叫做实对称矩阵
 *  A = { a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n } A 
=\left \{\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} 
& \cdots & a_{2n} \\\cdots & \cdots & \cdots & \cdots \\a_{n1} & a_{n2} & 
\cdots & a_{nn}\end{array} \right \}A=⎩⎪⎪⎨⎪⎪⎧a11a21⋯an1a12a22⋯an2⋯⋯⋯⋯a
1na2n⋯ann⎭⎪⎪⎬⎪⎪⎫
 *  a 12 = a 21 a i j = a j i a 1 n = a n 1 a_{12} = a_{21} \\ a_{ij} = a_{ji} 
\\ a_{1n} = a_{n1}a12=a21aij=ajia1n=an1 
 <>线性方程组
 * 设有n个未知数m个方程的线性方程组  { a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 
+ a 22 x 2 + . . . + a 2 n x n = b 1 ⋯ a m 1 x 1 + a m 2 x 2 + . . . + a m n x 
n = b m \left \{\begin{array}{cccc}a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = 
b_1 \\a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_1 \\\cdots \\a_{m1}x_1 + 
a_{m2}x_2 + ... + a_{mn}x_n = b_m\end{array} \right.⎩⎪⎪⎨⎪⎪⎧a11x1+a12x2+...+
a1nxn=b1a21x1+a22x2+...+a2nxn=b1⋯am1x1+am2x2+...+amnxn=bm
 * 可以写成以向量x为未知元的向量方程  A x = b Ax = b Ax=b
 * 可将上述线性方程组和向量方程混同使用 
定理1
 * n元齐次线性方程组  A x = 0 Ax = 0 Ax=0 有非零解的充要条件是 R ( A ) < n R(A) < n R(A)<n
 * 推论:当m < n时,齐次线性方程组  A m × n x = 0 A_{m×n} x = 0 Am×nx=0 一定有非零解 
定理2
 * 对于n元线性方程组  A x = b Ax=b Ax=b 
 * 无解的充要条件是  R ( A ) < R ( A , b ) ; R(A) < R(A, b); R(A)<R(A,b);
 * 有唯一解的充要条件是  R ( A ) = R ( A , b ) = n R(A) = R(A,b) = n R(A)=R(A,b)=n
 * 有无穷多解的充要条件是  R ( A ) = R ( A , b ) < n R(A) = R(A,b) < n R(A)=R(A,b)<n 
求解线性方程组的步骤
 * (1) 对于非齐次线性方程组,把它的增广矩阵B化成行阶梯形,从中可同时看出 R ( A ) R(A) R(A)和 R ( B ) R(B) R(B). 
若 R ( B ) < R ( B ) R(B) < R(B) R(B)<R(B), 则方程组无解.
 * (2) 若 R ( A ) = R ( B ) R(A) = R(B) R(A)=R(B), 则进一步把B化成行最简形. 
而对于齐次线性方程组,则把系数矩阵A化成行最简形.
 * (3) 设 R ( A ) = R ( B ) = r R(A) = R(B) = r R(A)=R(B)=r, 
把行最简形中r个非零行的非零首元所对应的未知量取作非自由未知量, 其余n-r个未知量取作自由未知量, 并令自由未知量分别等于 c 1 , c 2 , . . 
. , c n − r c_1, c_2, ..., c_{n-r}c1,c2,...,cn−r, 由B(或A)的行最简形,即可写出含n-r个参数的通解 
 <>齐次方程组解的结构定理
 * 齐次方程组  A m × n X = 0 A_{m×n}X = 0 Am×nX=0的基础解系所含向量个数为  n − r     ( r = R ( 
A ) ) n-r \ \ \ (r=R(A))n−r   (r=R(A)) 设一个基础解系为: ξ 1 , ξ 2 , ⋯   , ξ n − r 
\xi_1, \xi_2, \cdots, \xi_{n-r}ξ1,ξ2,⋯,ξn−r, 则通解为: x = k 1 ξ 1 + k 2 ξ 2 + . 
. . + k n − r ξ n − r     ( k i ∈ R ) x = k_1 \xi_1 + k_2\xi_2 + ... + k_{n-r} 
\xi_{n-r} \ \ \ (k_i \in R)x=k1ξ1+k2ξ2+...+kn−rξn−r   (ki∈R) 
例1
 * 
求  { x 1 + x 2 − x 3 − x 4 = 0 2 x 1 − 5 x 2 + 3 x 3 + 2 x 4 = 0 7 x 1 − 7 x 2 
+ 3 x 3 + x 4 = 0 \left \{\begin{array}{cccc}x_1 + x_2 - x_3 - x_4 = 0 \\2x_1 - 
5x_2 + 3x_3 + 2x_4 = 0 \\7x_1 - 7x_2 + 3x_3 + x_4 = 0\end{array} \right.⎩⎨⎧x1+
x2−x3−x4=02x1−5x2+3x3+2x4=07x1−7x2+3x3+x4=0 基础解系和通解
 * 
分析
 * 对系数矩阵A作初等行变换,变为行最简形矩阵, 有
 *  A = ( 1 1 − 1 − 1 2 − 5 3 2 7 − 7 3 1 ) ∼ ( 1 0 − 2 7 − 3 7 0 1 − 5 7 − 4 
7 0 0 0 0 ) A = \left (\begin{array}{cccc} 1 & 1 & -1 & -1 \\ 2 & -5 & 3 & 2 \\ 
7 & -7 & 3 & 1 \end{array} \right ) \sim \left ( \begin{array}{cccc} 1 & 0 & 
-\frac{2}{7} & -\frac{3}{7} \\ 0 & 1 & -\frac{5}{7} & -\frac{4}{7} \\ 0 & 0 & 0 
& 0 \end{array} \right )A=⎝⎛1271−5−7−133−121⎠⎞∼⎝⎛100010−72−750−73−7
40⎠⎞
 * 化为: { x 1 = 2 7 x 3 + 3 7 x 4 x 2 = 5 7 x 3 + 4 7 x 4 \left 
\{\begin{array}{cccc}x_1 = \frac{2}{7} x_3 + \frac{3}{7} x_4 \\x_2 = 
\frac{5}{7} x_3 + \frac{4}{7} x_4\end{array} \right.{x1=72x3+73x4x2=75x3
+74x4
 * 令  ( x 3 x 4 ) = ( 1 0 ) , ( 0 1 ) \left (\begin{array}{cccc}x_3 
\\x_4\end{array} \right ) = \left (\begin{array}{cccc}1 \\0\end{array} \right 
),\left (\begin{array}{cccc}0 \\1\end{array} \right )(x3x4)=(10),(01) 则  ( 
x 1 x 2 ) = ( 2 7 5 7 ) , ( 3 7 4 7 ) \left (\begin{array}{cccc}x_1 
\\x_2\end{array} \right ) = \left (\begin{array}{cccc}\frac{2}{7} 
\\\frac{5}{7}\end{array} \right ),\left (\begin{array}{cccc}\frac{3}{7} 
\\\frac{4}{7}\end{array} \right )(x1x2)=(7275),(7374),合起来得到基础解系
 * 基础解系为: ξ 1 = ( 2 7 5 7 1 0 ) , ξ 2 = ( 3 7 4 7 0 1 ) \xi_1 =\left 
(\begin{array}{cccc}\frac{2}{7} \\\frac{5}{7} \\1 \\0\end{array} \right ),\xi_2 
=\left (\begin{array}{cccc}\frac{3}{7} \\\frac{4}{7} \\0 \\1\end{array} \right )
ξ1=⎝⎜⎜⎛727510⎠⎟⎟⎞,ξ2=⎝⎜⎜⎛737401⎠⎟⎟⎞
 * 通解为: A = ( x 1 x 2 x 3 x 4 ) = c 1 ( 2 7 5 7 1 0 ) + c 2 ( 3 7 4 7 0 1 ) , 
    ( c 1 , c 2 ∈ R ) A =\left (\begin{array}{cccc}x_1 \\x_2 \\x_3 
\\x_4\end{array} \right ) = c_1\left (\begin{array}{cccc}\frac{2}{7} 
\\\frac{5}{7} \\1 \\0\end{array} \right ) + c_2\left 
(\begin{array}{cccc}\frac{3}{7} \\\frac{4}{7} \\0 \\1\end{array} \right ), \ \ 
\ (c_1, c_2 \in R)A=⎝⎜⎜⎛x1x2x3x4⎠⎟⎟⎞=c1⎝⎜⎜⎛727510⎠⎟⎟⎞+c2⎝⎜⎜⎛7374
01⎠⎟⎟⎞,   (c1,c2∈R) 
 * 
设 η ∗ \eta^* η∗是非齐次方程组 A m ✖ × n X = b A_{m✖×n} X = b Am✖×nX=b
的一特解,则当非齐次线性方程组有无穷多解时其通解为: x = k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − r ξ n − r + η ∗ ( 
k i ∈ R ) x = k_1\xi_1 + k_2\xi_2 + \cdots + k_{n-r}\xi_{n-r} + \eta^* (k_i \in 
R)x=k1ξ1+k2ξ2+⋯+kn−rξn−r+η∗(ki∈R)
 * 
其中 k 1 ξ 1 + ⋯ + k n − r ξ n − r k_1\xi_1 + \cdots + k_{n-r} \xi_{n-r} k1ξ1+⋯
+kn−rξn−r为对应齐次线性方程组的通解
例2
 * 求解方程组  { x 1 − x 2 − x 3 + x 4 = 0 , x 1 − x 2 + x 3 − 3 x 4 = 1 , x 1 − x 
2 − 2 x 3 + 3 x 4 = − 1 2 , \left \{\begin{array}{cccc}x_1 - x_2 - x_3 + x_4 = 
0,x_1 - x_2 + x_3 - 3x_4 = 1,x_1 - x_2 - 2x_3 + 3x_4 = - 
\frac{1}{2},\end{array} \right.{x1−x2−x3+x4=0,x1−x2+x3−3x4=1,x1−x2−2x3
+3x4=−21,
 * 分析 
 *  B = ( 1 − 1 − 1 1 1 − 1 1 − 3 1 − 1 − 2 3 ∣ 0 1 − 1 2 ) → ( 1 − 1 0 − 1 0 
0 1 − 2 0 0 0 0 ∣ 1 2 1 2 0 ) B = \left (\begin{array}{cccc}1 & -1 & -1 & 1 \\1 
& -1 & 1 & -3 \\1 & -1 & -2 & 3\end{array} \right |\left.\begin{array}{cccc}0 
\\1 \\-\frac{1}{2}\end{array} \right ) \to\left (\begin{array}{cccc}1 & -1 & 0 
& -1 \\0 & 0 & 1 & -2 \\0 & 0 & 0 & 0\end{array} \right 
|\left.\begin{array}{cccc}\frac{1}{2} \\\frac{1}{2} \\0\end{array} \right )B=⎝⎛
111−1−1−1−11−21−33∣∣∣∣∣∣01−21⎠⎞→⎝⎛100−100010−1−20∣∣∣∣∣∣21210⎠⎞
 * 可见  R ( A ) = R ( B ) = 2 < 4 R(A) = R(B) = 2 < 4 R(A)=R(B)=2<4, 故方程组有无穷多解
 *  { x 1 = x 2 + x 4 + 1 2 x 3 = 2 x 4 + 1 2 ⇒ { x 1 = x 2 + x 4 + 1 2 x 2 = 
x 2 x 3 = 2 x 4 + 1 2 x 4 = x 4 ⇒ ( x 1 x 2 x 3 x 4 ) = C 1 ( 1 1 0 0 ) + C 2 ( 
1 0 2 1 ) + ( 1 2 0 1 2 0 )     ( C 1 , C 2 ∈ R ) . \left 
\{\begin{array}{cccc}x_1 = x_2 + x_4 + \frac{1}{2} \\x_3 = 2x_4 + 
\frac{1}{2}\end{array} \right. \Rightarrow\left \{\begin{array}{cccc}x_1 = x_2 
+ x_4 + \frac{1}{2} \\x_2 = x_2 \\x_3 = 2x_4 + \frac{1}{2} \\x_4 = 
x_4\end{array} \right. \Rightarrow \left ( \begin{array}{cccc} x_1 \\ x_2 \\ 
x_3 \\ x_4 \end{array} \right ) = C_1 \left ( \begin{array}{cccc} 1 \\ 1 \\ 0 
\\ 0 \end{array} \right ) + C_2 \left ( \begin{array}{cccc} 1 \\ 0 \\ 2 \\ 1 
\end{array} \right ) + \left ( \begin{array}{cccc} \frac{1}{2} \\ 0 \\ 
\frac{1}{2} \\ 0 \end{array} \right ) \ \ \ (C_1, C_2 \in R).{x1=x2+x4+21x3
=2x4+21⇒⎩⎪⎪⎨⎪⎪⎧x1=x2+x4+21x2=x2x3=2x4+21x4=x4⇒⎝⎜⎜⎛x1x2x3x4
⎠⎟⎟⎞=C1⎝⎜⎜⎛1100⎠⎟⎟⎞+C2⎝⎜⎜⎛1021⎠⎟⎟⎞+⎝⎜⎜⎛210210⎠⎟⎟⎞   (C1,C2∈R).
 * 在 { x 1 = x 2 + x 4 + 1 2 x 3 = 2 x 4 + 1 2 \left \{\begin{array}{cccc}x_1 
= x_2 + x_4 + \frac{1}{2} \\x_3 = 2x_4 + \frac{1}{2}\end{array} \right.{x1=x2+
x4+21x3=2x4+21
 * 取 x 2 = x 4 = 0 x_2 = x_4 = 0 x2=x4=0, 则  x 1 = x 3 = 1 2 x_1 = x_3 = 
\frac{1}{2}x1=x3=21, 即得方程组的一个解  η ∗ = ( 1 2 0 1 2 0 ) \eta^* =\left 
(\begin{array}{cccc}\frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0\end{array} \right )η∗=⎝
⎜⎜⎛210210⎠⎟⎟⎞
 * 在对应的齐次线性方程组  { x 1 = x 2 + x 4 , x 3 = 2 x 4 \left \{ 
\begin{array}{cccc}x_1 = x_2 + x_4, \\ x_3 = 2x_4\end{array} \right.{x1=x2+x4
,x3=2x4 中取
 *  ( x 2 x 4 ) = ( 1 0 ) \left (\begin{array}{cccc}x_2 \\x_4\end{array} 
\right ) = \left (\begin{array}{cccc}1 \\0\end{array} \right )(x2x4)=(10) 及 
 ( 0 1 ) \left (\begin{array}{cccc}0 \\1\end{array} \right )(01),则 ( x 1 x 3 ) 
= ( 1 0 ) \left (\begin{array}{cccc}x_1 \\x_3\end{array} \right ) =\left 
(\begin{array}{cccc}1 \\0\end{array} \right )(x1x3)=(10) 及  ( 1 2 ) \left 
(\begin{array}{cccc}1 \\2\end{array} \right )(12)
 * 即得对应的齐次线性方程组的基础解系  ξ 1 = ( 1 1 0 0 ) , ξ 2 = ( 1 0 2 1 ) \xi_1 =\left 
(\begin{array}{cccc}1 \\1 \\0 \\0 \end{array} \right ), \xi_2 = \left ( 
\begin{array}{cccc}1 \\0 \\2 \\1\end{array} \right )ξ1=⎝⎜⎜⎛1100⎠⎟⎟⎞,ξ2=⎝⎜⎜⎛
1021⎠⎟⎟⎞
 * 于是所求通解为: ( x 1 x 2 x 3 x 4 ) = c 1 ( 1 1 0 0 ) + c 2 ( 1 0 2 1 ) + ( 1 2 0 
1 2 0 ) ,     ( c 1 , c 2 ∈ R ) . \left (\begin{array}{cccc}x_1 \\x_2 \\x_3 
\\x_4\end{array} \right ) = c_1 \left (\begin{array}{cccc}1 \\1 \\0 
\\0\end{array} \right ) + c_2 \left (\begin{array}{cccc}1 \\0 \\2 
\\1\end{array} \right ) + \left (\begin{array}{cccc}\frac{1}{2} \\0 
\\\frac{1}{2} \\0\end{array} \right ), \ \ \ (c_1, c_2 \in R).⎝⎜⎜⎛x1x2x3x4
⎠⎟⎟⎞=c1⎝⎜⎜⎛1100⎠⎟⎟⎞+c2⎝⎜⎜⎛1021⎠⎟⎟⎞+⎝⎜⎜⎛210210⎠⎟⎟⎞,   (c1,c2∈R). 
例3
 * 求解齐次线性方程组  { x 1 + 2 x 2 + 2 x 3 + x 4 = 0 2 x 1 + x 2 − 2 x 3 − 2 x 4 = 0 
x 1 − x 2 − 4 x 3 − 3 x 4 = 0 \left \{\begin{array}{cccc}x_1 + 2x_2 + 2x_3 + 
x_4 = 0 \\2x_1 + x_2 - 2x_3 - 2x_4 = 0 \\x_1 - x_2 - 4x_3 - 3x_4 = 0\end{array} 
\right.⎩⎨⎧x1+2x2+2x3+x4=02x1+x2−2x3−2x4=0x1−x2−4x3−3x4=0
 * 分析: 
 * 对系数矩阵 A = ( 1 2 2 1 2 1 − 2 − 2 1 − 1 − 4 − 3 ) A =\left 
(\begin{array}{cccc}1 & 2 & 2 & 1 \\2 & 1 & -2 & -2 \\1 & -1 & -4 & -3 
\\\end{array} \right )A=⎝⎛12121−12−2−41−2−3⎠⎞施行初等行变换化为最简阶梯形
 *  r 2 − 2 r 1 , r 3 − r 1 r_2 - 2r_1, r_3 - r_1 r2−2r1,r3−r1 
 *  ( 1 2 2 1 0 − 3 − 6 − 4 0 − 3 − 6 − 4 ) \left (\begin{array}{cccc}1 & 2 & 
2 & 1 \\0 & -3 & -6 & -4 \\0 & -3 & -6 & -4\end{array} \right )⎝⎛1002−3−32−6−
61−4−4⎠⎞ 
 *  r 3 − r 2 r_3 - r_2 r3−r2 
 *  ( 1 2 2 1 0 − 3 − 6 − 4 0 0 0 0 ) \left (\begin{array}{cccc}1 & 2 & 2 & 1 
\\0 & -3 & -6 & -4 \\0 & 0 & 0 & 0\end{array} \right )⎝⎛1002−302−601−40⎠⎞ 
 *  − 1 3 r 2 - \frac{1}{3} r_2 −31r2 
 *  ( 1 2 2 1 0 1 2 4 3 0 0 0 0 ) \left (\begin{array}{cccc}1 & 2 & 2 & 1 \\0 
& 1 & 2 & \frac{4}{3} \\0 & 0 & 0 & 0\end{array} \right )⎝⎛1002102201340⎠⎞
 
 *  r 1 − 2 r 2 r_1 - 2r_2 r1−2r2 
 *  ( 1 0 − 2 − 5 3 0 1 2 − 4 3 0 0 0 0 ) \left (\begin{array}{cccc}1 & 0 & -2 
& -\frac{5}{3} \\0 & 1 & 2 & -\frac{4}{3} \\0 & 0 & 0 & 0\end{array} \right )⎝⎛
100010−220−35−340⎠⎞ 
 * 等价式:  { x 1 = 2 x 3 + 5 3 x 4 x 2 = − 2 x 3 + 4 3 x 4 \left 
\{\begin{array}{cccc}x_1 = 2x_3 + \frac{5}{3}x_4 \\x_ 2= -2x_3 + 
\frac{4}{3}x_4\end{array}\right.{x1=2x3+35x4x2=−2x3+34x4
 * 令: x 3 = c 1 , x 4 = c 2 x_3 = c_1, x_4 = c_2 x3=c1,x4=c2
 * 写出参数形式的通解,再改写为向量形式
 * 通解: ( x 1 = 2 c 1 + 5 3 c 2 x 2 = − 2 c 1 − 4 3 c 2 x 3 = c 1 x 4 = c 2 ) 
\left (\begin{array}{cccc}x_1 = 2c_1 + \frac{5}{3}c_2 \\x_2 = -2c_1 - 
\frac{4}{3}c_2 \\x_3 = c_1 \\x_4 = c_2\end{array} \right )⎝⎜⎜⎛x1=2c1+35c2x2
=−2c1−34c2x3=c1x4=c2⎠⎟⎟⎞
 * 即: ( x 1 x 2 x 3 x 4 ) = c 1 ( 2 − 2 1 0 ) + c 2 ( 5 3 − 4 3 0 1 ) \left 
(\begin{array}{cccc}x_1 \\x_2 \\x_3 \\x_4\end{array} \right ) = c_1\left 
(\begin{array}{cccc}2 \\-2 \\1 \\0\end{array} \right ) + c_2\left 
(\begin{array}{cccc}\frac{5}{3} \\- \frac{4}{3} \\ 0 \\ 1 \end{array} \right )⎝⎜
⎜⎛x1x2x3x4⎠⎟⎟⎞=c1⎝⎜⎜⎛2−210⎠⎟⎟⎞+c2⎝⎜⎜⎛35−3401⎠⎟⎟⎞, 其中  c 1 , c 
2 c_1, c_2c1,c2为任意实数 
例4
 * 求解非齐次线性方程组  { x 1 − 2 x 2 + 3 x 3 − x 4 = 1 3 x 1 − x 2 + 5 x 3 − 3 x 4 = 2 
2 x 1 + x 2 + 2 x 3 − 2 x 4 = 3 \left \{\begin{array}{cccc}x_1 - 2x_2 + 3x_3 - 
x_4 = 1 \\3x_1 - x_2 + 5x_3 - 3x_4 = 2 \\2x_1 + x_2 + 2x_3 - 2x_4 = 
3\end{array} \right.⎩⎨⎧x1−2x2+3x3−x4=13x1−x2+5x3−3x4=22x1+x2+2x3−2x4
=3
 * 分析: 
 * 对增广矩阵只用行变换化阶梯形
 *  B = [ 1 − 2 3 − 1 3 − 1 5 − 3 2 1 2 − 2 ∣ 1 2 3 ] → r [ 1 − 2 3 − 1 0 5 − 
4 0 0 0 0 0 ∣ 1 − 1 2 ] B =\left [\begin{array}{cccc}1 & -2 & 3 & -1 \\3 & -1 & 
5 & -3 \\2 & 1 & 2 & -2\end{array} \right |\left.\begin{array}{cccc}1 \\2 
\\3\end{array} \right ] \overset{\text{r}}{\to}\left [\begin{array}{cccc}1 & -2 
& 3 & -1 \\0 & 5 & -4 & 0 \\ 0 & 0 & 0 & 0\end{array} \right | 
\left.\begin{array}{cccc} 1 \\ -1 \\2 \end{array} \right ]B=⎣⎡132−2−11352−1−
3−2∣∣∣∣∣∣123⎦⎤→r⎣⎡100−2503−40−100∣∣∣∣∣∣1−12⎦⎤
 * 最后一行对应的方程是  0 = 2 0 = 2 0=2, 所以无解 
例5
 * 解方程组  { x 1 + 2 x 2 + x 4 = 3 x 1 + 2 x 2 + x 3 − 3 x 4 = 8 2 x 1 + 4 x 2 + 
2 x 4 = 6 x 1 + 2 x 2 − x 3 + 5 x 4 = − 2 \left \{\begin{array}{cccc}x_1 + 2x_2 
+ x_4 = 3 \\x_1 + 2x_2 + x_3 - 3x_4 = 8 \\2x_1 + 4x_2 + 2x_4 = 6 \\x_1 + 2x_2 - 
x_3 + 5x_4 = -2\end{array} \right.⎩⎪⎪⎨⎪⎪⎧x1+2x2+x4=3x1+2x2+x3−3x4=82x1+
4x2+2x4=6x1+2x2−x3+5x4=−2
 * 分析 
 * 第一步:把增广矩阵用行变换化阶梯形,如果  R ( A ) ≠ = R ( B ) R(A) \neq = R(B) R(A)==R(B), 则无解
 * 如果 R ( A ) = R ( B ) R(A) = R(B) R(A)=R(B), 则继续化为最简阶梯形
 *  B = [ 1 2 0 1 1 2 1 − 3 2 4 0 2 1 2 − 1 5 ∣ 3 8 6 − 2 ] → r [ 1 2 0 1 0 0 
1 − 4 0 0 0 0 0 0 0 0 ∣ 3 5 0 0 ] B =\left [\begin{array}{cccc}1 & 2 & 0 & 1 
\\1 & 2 & 1 & -3 \\2 & 4 & 0 & 2 \\1 & 2 & -1 & 5 \\\end{array} \right 
|\left.\begin{array}{cccc}3 \\8 \\6 \\-2\end{array} \right ] 
\overset{\text{r}}{\to} \left [ \begin{array}{cccc} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 
& -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right | \left. 
\begin{array}{cccc} 3 \\ 5 \\ 0 \\ 0 \end{array} \right ]B=⎣⎢⎢⎡11212242010−1
1−325∣∣∣∣∣∣∣∣386−2⎦⎥⎥⎤→r⎣⎢⎢⎡1000200001001−400∣∣∣∣∣∣∣∣3500⎦⎥⎥⎤
 * 第二步:写出等价的(独立的)方程组,保留第一个未知数在左边其余的移到右边,移到右边的称为自由变量
 *  [ 1 2 0 1 0 0 1 − 4 ∣ 3 5 ] → { x 1 = − 2 x 2 − x 4 + 3 x 3 = 4 x 4 + 5 
\left [\begin{array}{cccc}1 & 2 & 0 & 1\\0 & 0 & 1 & -4\\\end{array} \right 
|\left.\begin{array}{cccc}3 \\5\end{array} \right ] \to\left 
\{\begin{array}{cccc}x_1 = -2x_2 - x_4 + 3 \\x_3 = 4x_4 + 5 \end{array} \right.[
1020011−4∣∣∣∣35]→{x1=−2x2−x4+3x3=4x4+5
 * 第三步:令自由变量为任意实数,写出通解。再改写为向量形式。 { x 1 = − 2 x 2 − x 4 + 3 x 3 = 4 x 4 + 5 
\left \{\begin{array}{cccc}x_1 = -2x_2 - x_4 + 3 \\x_3 = 4x_4 + 5\end{array} 
\right.{x1=−2x2−x4+3x3=4x4+5
 * 令  x 2 = k 1 , x 4 = k 2 x_2 = k_1, x_4 = k_2 x2=k1,x4=k2, 通解: { x 1 = 
− 2 k 1 − k 2 + 3 x 2 = k 1 x 3 = 4 k 2 + 5 x 4 = k 2 \left 
\{\begin{array}{cccc}x_1 = -2k_1 - k_2 + 3 \\x_2 = k_1 \\x_3 = 4k_2 + 5 \\x_4 = 
k_2\end{array} \right.⎩⎪⎪⎨⎪⎪⎧x1=−2k1−k2+3x2=k1x3=4k2+5x4=k2
 * 即: x = k 1 [ − 2 1 0 0 ] + k 2 [ − 1 0 4 1 ] + [ 3 0 5 0 ] x = k_1\left 
[\begin{array}{cccc}-2 \\1 \\0 \\0\end{array} \right ] + k_2\left 
[\begin{array}{cccc}-1 \\0 \\4 \\1\end{array} \right ] + \left 
[\begin{array}{cccc}3 \\0 \\5 \\0\end{array} \right ]x=k1⎣⎢⎢⎡−2100⎦⎥⎥⎤+k2⎣⎢
⎢⎡−1041⎦⎥⎥⎤+⎣⎢⎢⎡3050⎦⎥⎥⎤
 *  k 1 , k 2 k_1, k_2 k1,k2 为任意常数