前言
本身我是一个比较偏向少使用Stream的人,因为调试比较不方便。
但是, 不得不说,stream确实会给我们编码带来便捷。
所以还是忍不住想分享一些奇技淫巧。
正文
Stream流 其实操作分三大块 : 
 创建
  处理 
 收集
 我今天想分享的是 收集 这part的玩法。
 
 
OK,开始结合代码示例一起玩下:
lombok依赖引入,代码简洁一点:
 <dependency> <groupId>org.projectlombok</groupId> 
<artifactId>lombok</artifactId> <version>1.18.20</version> 
<scope>compile</scope> </dependency> 
 准备一个UserDTO.java 
/** * @Author: JCccc * @Date: 2022-9-20 01:25 * @Description: */ @Data public 
class UserDTO { /** * 姓名 */ private String name; /** * 年龄 */ private Integer 
age; /** * 性别 */ private String sex; /** * 是否有方向 */ private Boolean 
hasOrientation; } 
准备一个模拟获取List的函数:
  
 private static List<UserDTO> getUserList() { UserDTO userDTO = new UserDTO(); 
userDTO.setName("小冬"); userDTO.setAge(18); userDTO.setSex("男"); 
userDTO.setHasOrientation(false); UserDTO userDTO2 = new UserDTO(); 
userDTO2.setName("小秋"); userDTO2.setAge(30); userDTO2.setSex("男"); 
userDTO2.setHasOrientation(true); UserDTO userDTO3 = new UserDTO(); 
userDTO3.setName("春"); userDTO3.setAge(18); userDTO3.setSex("女"); 
userDTO3.setHasOrientation(true); List<UserDTO> userList = new ArrayList<>(); 
userList.add(userDTO); userList.add(userDTO2); userList.add(userDTO3); return 
userList; } 
第一个小玩法
将集合通过Stream.collect() 转换成其他集合/数组:
  
现在拿List<UserDTO> 做例子
转成  HashSet<UserDTO> :
 List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); HashSet<UserDTO> usersHashSet = 
usersStream.collect(Collectors.toCollection(HashSet::new)); 
转成  Set<UserDTO> usersSet :
 List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); Set<UserDTO> usersSet = 
usersStream.collect(Collectors.toSet()); 
转成  ArrayList<UserDTO> :
 List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); ArrayList<UserDTO> usersArrayList = 
usersStream.collect(Collectors.toCollection(ArrayList::new)); 
转成  Object[] objects :
 List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); Object[] objects = usersStream.toArray(); 
转成  UserDTO[] users :
 List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); UserDTO[] users = usersStream.toArray(UserDTO[]::new); for 
(UserDTO user : users) { System.out.println(user.toString()); } 
第二个小玩法
聚合(求和、最小、最大、平均值、分组)
找出年龄最大:
stream.max()
写法 1:
List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); Optional<UserDTO> maxUserOptional = usersStream.max((s1, s2) 
-> s1.getAge() - s2.getAge()); if (maxUserOptional.isPresent()) { UserDTO 
masUser = maxUserOptional.get(); System.out.println(masUser.toString()); } 
写法2: 
List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); Optional<UserDTO> maxUserOptionalNew = 
usersStream.max(Comparator.comparingInt(UserDTO::getAge)); if 
(maxUserOptionalNew.isPresent()) { UserDTO masUser = maxUserOptionalNew.get(); 
System.out.println(masUser.toString()); } 
效果:
 输出:
 UserDTO(name=小秋, age=30, sex=男, hasOrientation=true)
找出年龄最小:
stream.min()
写法 1:
Optional<UserDTO> minUserOptional = 
usersStream.min(Comparator.comparingInt(UserDTO::getAge)); if 
(minUserOptional.isPresent()) { UserDTO minUser = minUserOptional.get(); 
System.out.println(minUser.toString()); } 
写法2: 
  
Optional<UserDTO> min = usersStream.collect(Collectors.minBy((s1, s2) -> 
s1.getAge() - s2.getAge())); 
求平均值:
List<UserDTO> userList = getUserList(); Stream<UserDTO> usersStream = 
userList.stream(); Double avgScore = 
usersStream.collect(Collectors.averagingInt(UserDTO::getAge)); 
效果:
 
求和:
 写法1:
Integer reduceAgeSum = usersStream.map(UserDTO::getAge).reduce(0, 
Integer::sum); 
写法2:
  
int ageSumNew = usersStream.mapToInt(UserDTO::getAge).sum(); 
统计数量:
  
long countNew = usersStream.count(); 
简单分组:
按照具体年龄分组:
//按照具体年龄分组 Map<Integer, List<UserDTO>> ageGroupMap = 
usersStream.collect(Collectors.groupingBy((UserDTO::getAge))); 
效果: 
 
分组过程加写判断逻辑:
 
//按照性别 分为"男"一组 "女"一组 Map<Integer, List<UserDTO>> groupMap = 
usersStream.collect(Collectors.groupingBy(s -> { if (s.getSex().equals("男")) { 
return 1; } else { return 0; } })); 
效果:
 
 
多级复杂分组:
//多级分组 // 1.先根据年龄分组 // 2.然后再根据性别分组 Map<Integer, Map<String, Map<Integer, 
List<UserDTO>>>> moreGroupMap = usersStream.collect(Collectors.groupingBy( 
//1.KEY(Integer) VALUE (Map<String, Map<Integer, List<UserDTO>>) 
UserDTO::getAge, Collectors.groupingBy( //2.KEY(String) VALUE (Map<Integer, 
List<UserDTO>>) UserDTO::getSex, Collectors.groupingBy((userDTO) -> { if 
(userDTO.getSex().equals("男")) { return 1; } else { return 0; } })))); 
效果: