<>常用矩阵求导公式
常见矩阵求导公式:
公式1
 d x T d x = I             d x d x T = I \frac{\text{d}x^T}{\text{d}x}=I\ \ \ 
\ \ \ \ \ \ \ \ \frac{\text{d}x}{\text{d}x^T}=IdxdxT=I           dxTdx=I
公式2
 d x T A d x = A           d A x d x T = A \frac{\text{d}x^TA}{\text{d}x}=A\ \ 
\ \ \ \ \ \ \ \frac{\text{d}Ax}{\text{d}x^T}=AdxdxTA=A         dxTdAx=A
公式3
 d A x d x = A T           d x A d x = A T \frac{\text{d}Ax}{\text{d}x}=A^T\ \ 
\ \ \ \ \ \ \ \frac{\text{d}xA}{\text{d}x}=A^TdxdAx=AT         dxdxA=AT
公式4
 ∂ u ∂ x T = ( ∂ u T ∂ x ) T \frac{\partial u}{\partial x^T}=\left( 
\frac{\partial u^T}{\partial x} \right) ^T∂xT∂u=(∂x∂uT)T
公式5
 ∂ u T v ∂ x = ∂ u T ∂ x v + ∂ v T ∂ x u T \frac{\partial u^Tv}{\partial 
x}=\frac{\partial u^T}{\partial x}v+\frac{\partial v^T}{\partial x}u^T∂x∂uTv=∂x
∂uTv+∂x∂vTuT
公式6
 ∂ u v T ∂ x = ∂ u ∂ x v T + u ∂ v T ∂ x \frac{\partial uv^T}{\partial 
x}=\frac{\partial u}{\partial x}v^T+u\frac{\partial v^T}{\partial x}∂x∂uvT=∂x∂u
vT+u∂x∂vT
公式7
 d x T x d x = 2 x \frac{\text{d}x^Tx}{\text{d}x}=2x dxdxTx=2x
 d x T A x d x = ( A + A T ) x \frac{\text{d}x^TAx}{\text{d}x}=\left( A+A^T 
\right) xdxdxTAx=(A+AT)x
公式8
 ∂ A B ∂ x = ∂ A ∂ x B + A ∂ B ∂ x \frac{\partial AB}{\partial 
x}=\frac{\partial A}{\partial x}B+A\frac{\partial B}{\partial x}∂x∂AB=∂x∂AB+A∂
x∂B
公式9
 ∂ u T X v ∂ X = u v T \frac{\partial u^TXv}{\partial X}=uv^T ∂X∂uTXv=uvT
公式10
 ∂ u T X T X u ∂ X = 2 X u u T \frac{\partial u^TX^TXu}{\partial X}=2Xuu^T ∂X∂u
TXTXu=2XuuT
公式11
 ∂ [ ( X u − v ) T ( X u − v ) ] ∂ X = 2 ( X u − v ) u T \frac{\partial \left[ 
\left( Xu-v \right) ^T\left( Xu-v \right) \right]}{\partial X}=2\left( Xu-v 
\right) u^T∂X∂[(Xu−v)T(Xu−v)]=2(Xu−v)uT